Smart Nano-objects for Alteration of Lipid bilayers (SNAL) Initial Training Network is a multidisciplinary EU-funded 7th Framework Programme specially designed to provide scientific and transferable skill training and career development for early stage researchers and experienced researchers in the field of lipid research.

People ProjectsMethodsEventsNews & Media

Work on a similar topic?
Contact us

Bactericidal activity of black silicon

Nature Comm., 4, 2838 (2013)

E. P. Ivanova, J. Hasan, H. K. Webb, G. Gervinskas, S. Juodkazis, Vi K. Truong, A. H. F. Wu, R. N. Lamb, V. A. Baulin, G. S. Watson, J. A. Watson, D. E. Mainwaring, R. J. Crawford

 Black silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications. Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata. Here we show that the nanoprotrusions on the surfaces of both black silicon and D. bipunctata wings form hierarchical structures through the formation of clusters of adjacent nanoprotrusions. These structures generate a mechanical bactericidal effect, independent of chemical composition. Both surfaces are highly bactericidal against all tested Gram-negative and Gram-positive bacteria, and endospores, and exhibit estimated average killing rates of up to ~450,000 cells min−1 cm−2. This represents the first reported physical bactericidal activity of black silicon or indeed for any hydrophilic surface. This biomimetic analogue represents an excellent prospect for the development of a new generation of mechano-responsive, antibacterial nanomaterials.

Full text

DOI: 10.1038/ncomms3838

black silicon

Elena Ivanova

Leave a Reply