ACS Appl. Mater. Interfaces: 8(34) 22025-22031 (2016)
Vy T. H. Pham, Vi Khanh Truong, Anna Orlowska, Shahram Ghanaati, Mike Barbeck, Patrick Booms, Alex James Fulcher, Chris M. Bhadra, Ricardas Buividas, Vladimir A Baulin, Charles James Kirkpatrick, Pauline Doran, David E. Mainwaring, Saulius Juodkazis, Russell J Crawford, and Elena P. Ivanova
With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time, that a precise nanotopology provides an effective intervention in bacterial co-colonization enabling the proliferation of eukaryotic cells on a substratum surface, pre-infected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells, but is biocompatible not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface is demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.