Macromol. Biosci. (2016)
Shiqi Wang, Xiaoxue Liu, Ignacio J. Villar-Garcia and Rongjun Chen
This study reports a series of novel amino acid based dual-responsive hydrogels. Prepared by a facile one-pot 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling reaction, the solid content, structure, and mechanical behavior of hydrogels could be easily adjusted by changing the concentrations of the polymers and the crosslinkers. With pH-responsive anionic pseudo-peptides as backbones and disulfide-containing l-cystine dimethyl ester as crosslinkers, these hydrogels are able to collapse and form relatively compact structure at an acidic pH, while swelled and partly dissociated at a neutral pH. Further addition of dithiothreitol (DTT) facilitated complete degradation of hydrogels. The high loading efficiency, rapid but complete triggered-release, and good biocompatibility make these hydrogels promising candidates for oral delivery.
- Influence of a pH-sensitive polymer on the structure of monoolein cubosomes - 05/01/2018
- pH-Responsive, Lysine-Based, Hyperbranched Polymers Mimicking Endosomolytic Cell-Penetrating Peptides for Efficient Intracellular Delivery - 09/05/2017
- Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery - 27/02/2017